Published Jul 19, 2021

Winney Eva


In the past two decades, many face recognition methods have been proposed. Among them, most researchers use the entire face as the basis for recognition. The basic technical route is to extract and compare the general features of the entire face. However, in actual scenes, human faces may be blocked by obstacles. Therefore, how to realize face recognition by using some of the facial features that can be obtained? In addition, this partial face recognition technology is mostly based on the acquisition of key points of the face to recognize the whole face. This review intends to summarize the full face and partial face recognition methods based on key points of the face.



Face Recognition, Partial Facial Features, Information Extraction, Point-to-Point Comparison, Human Being

1. Leone M. From fingers to faces: Visual semiotics and digital forensics. Int J Semiot Law 2021; 34:579-599. DOI: https://doi.org/10.1007/s11196-020-09766-x

2. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 2009; 31(2):210-227. DOI: https://doi.org/10.1109/TPAMI.2008.79

3. Rahim MSM, Basori AH, Saadi SM, Rad AE, Rehman A. Emotional facial expression and tears simulation: An analysis & comparison of current approaches. 3D Research 2015; 6(2):1-14. DOI: https://doi.org/10.1007/s13319-015-0046-7

4. Harmon LD, Hunt WF. Automatic recognition of human face profiles. Comput Graph Image Process 1977; 6(2):135-156. DOI: https://doi.org/10.1016/S0146-664X(77)80009-9

5. Kanade T. Identification of Human Faces. In: Computer recognition of human faces. Interdisciplinary Systems Research/Interdisziplinäre Systemforschung (Analysis-Modeling-Simulation/Analyse-Formalisierung-Simulation). Birkhäuser, Basel. 1977; DOI: https://doi.org/10.1007/978-3-0348-5737-6_3

6. Kaya Y, Kobayashi K. A basic study on human face recognition. Front Pattern Recog 1972; Academic Press, pp265-pp289. ISBN 9780127371405. DOI: https://doi.org/10.1016/B978-0-12-737140-5.50017-8

7. Brunelli R, Poggio T. Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell 1993; 15(10):1042-1052. DOI: https://doi.org/10.1109/34.254061

8. Carıkçı M, Özen F. A Face Recognition System Based on Eigenfaces Method. Procedia Technol 2012; 1:118-123. DOI: https://doi.org/10.1016/j.protcy.2012.02.023

9. Chen D, Cao X, Wen F, Sun J. Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification. 2013 IEEE Confer Comput Vis Pattern Recog 2013; pp3025-3032. DOI: https://doi.org/10.1109/CVPR.2013.389

10. Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N. Localizing parts of faces using a consensus of exemplars. IEEE Trans Pattern Anal Mach Intell 2013; 35(12):2930-2940. DOI: https://doi.org/10.1109/TPAMI.2013.23

11. Cao X, Wei Y, Wen F, Sun J. Face alignment by Explicit Shape Regression. 2012 IEEE Confer Comput Vis Pattern Recog 2012; pp2887-2894. DOI: https://doi.org/10.1109/CVPR.2012.6248015

12. Weng R, Lu J, Hu J, Yang G, Tan YP. Robust feature set matching for partial face recognition. Proceed IEEE Int Confer Comput Vis 2013; pp601-608. DOI: https://doi.org/10.1109/ICCV.2013.80

13. Liao S, Jain AK, Li SZ. Partial face recognition: alignment-free approach. IEEE Trans Pattern Anal Mach Intell 2013; 35(5):1193-205. DOI: https://doi.org/10.1109/TPAMI.2012.191
How to Cite
Eva, W. (2021). Face Recognition Technology Based on Partial Facial Features. Science Insights, 37(5), 292–297. https://doi.org/10.15354/si.21.re068