Low-Density Resin-Based Ablative Heat Protection Materials
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Published
May 30, 2022
Abstract
The severe aerodynamic heating that occurs when a spacecraft reenters the atmosphere takes place. The material used for thermal protection is an essential part of the system used for thermal protection. A number of chemical and physical transformations take place in the ablation heat-resistant material that is based on resin. This material is an organic polymer. We herein briefly review the status quo of low-density resin-based ablative heat protection materials.
##plugins.themes.bootstrap3.article.details##
Keywords
Spacecraft, Aero-Thermal Environment, Heat-Resistant Materials, Thermal Protection, Multifunction
References
1. Le VT, Ha NS, Goo NS. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Compos B Eng 2021; 226:109301. DOI: https://doi.org/10.1016/j.compositesb.2021.109301
2. Miao W, Li Q, Li J, Zhou J, Cheng X. Thermal environment and aeroheating mechanism of protuberances on mars entry capsule. Space Sci Technol 2021; 2021:9754068, DOI: https://doi.org/10.34133/2021/9754068
3. Pirolini A. Materials Used in Space Shuttle Thermal Protection Systems. AZO Materials 2014; Last access: May 20, 2022. Available at: https://www.azom.com/article.aspx?ArticleID=11443
4. Thomas DS, Gilbert SW. Costs and cost effectiveness of additive manufacturing: A literature review and discussion. National Institute of Standards and Technology (NIST) Special Publication 1176, 2014; DOI: http://dx.doi.org/10.6028/NIST.SP.1176
5. Pulci G, TirilloJ, Marra F, Fossati F, Bartuli C, Valente T. Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties. Compos A Appl Sci Manuf 2010; 41:1483-1490. DOI: https://doi.org/10.1016/j.compositesa.2010.06.010
6. Li Z, Ma J. Experimental study on mechanical properties of the sandwich composite structure reinforced by basalt fiber and Nomex honeycomb. Materials 2020; 13(8):1870. DOI: https://doi.org/10.3390/ma13081870
7. Hanif A, Lu Z, Cheng Y. Diao S, Li Z. Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites. Int J Concr Struct Mater 2017; 11:99-113. DOI: https://doi.org/10.1007/s40069-016-0184-1
8. Debnath T, Debnath B, Lake RK. Thermal conductivity of the quasi-one-dimensional materials TaSe3 and ZrTe3. Phys Rev Materials 2021; 5:034010. DOI: https://doi.org/10.1103/PhysRevMaterials.5.034010
9. O'Regan M, Preto P, Stranne C, Jakobsson M, Koshurnikov A. Surface heat flow measurements from the East Siberian continental slope and southern Lomonosov Ridge, Arctic Ocean. Geochem Geophys Geosyst 2016; 17:1608-1622, DOI: https://doi.org/10.1002/2016GC006284
10. Wang J, Li Y, Liu X, Shen C, Zhang H, Xiong K. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China.Chinese Journal of Aeronautics 2021; 34(2):1-27. DOI: https://doi.org/10.1016/j.cja.2020.06.021
11. Dutta M, Matteppanavar S, Prasad MVD, Pandey J, Warankar A, Mandal P, Soni A, Waghmare UV, Biswas K. Ultralow thermal conductivity in chain-like TlSe Due to inherent Tl+ rattling. J Am Cheml Soc 2019; 141(51):20293-20299. DOI: https://doi.org/10.1021/jacs.9b10551
12. Riccucci G, Pezzana L, Lantean S, Tori A, Spriano S, Sangermano M. Investigation of the thermal conductivity of silicon-base composites: The effect of filler materials and characteristic on thermo-mechanical response of silicon composite. Appl Sci 2021; 11:5663. DOI: https://doi.org/10.3390/app11125663
13. Maurizio N, Marco R, Luigi T, Debora P. High temperature composites from renewable resources: A perspective on current technological challenges for the manufacturing of non-oil based high char yield matrices and carbon fibers. Front Mater 2022; 9:805131. DOI: https://doi.org/10.3389/fmats.2022.805131
14. Miao Y, Geng Y, Li X, Liu X. Tension system design based on heated-mandrel winding process. J Comp Mater 2022; 56(7):1091-1105. DOI: https://doi.org/10.1177/00219983211069200
15. Li H, Wang N, Han X, Fan B, Feng Z, Guo AS. Simulation of thermal behavior of glass fiber/phenolic composites exposed to heat flux on one side. Materials (Basel) 2020; 13(2):421. DOI: https://doi.org/10.3390/ma13020421
16. Dorsey J, Chen R, Poteet C, Wurster K. Metallic thermal protection system requirements, environments, and integrated concepts. J Spacecraft Rocket 2004; 41:162-172. DOI: https://doi.org/10.2514/1.9173
17. Sun C, Xia R, Shi H, Yao H, Liu X, Hou J, Huang F, Yip H-L, Cao Y. Heat-Insulating Multifunctional Semitransparent Polymer Solar Cells. Joule 2018; 2(9):1816-1826.DOI: https://doi.org/10.1016/j.joule.2018.06.006
18. Fahrenholtz W, Hilmas G. Oxidation of ultra-high temperature transition metal diboride ceramics. Int Mater Rev 2012; 57:61-72. DOI: https://doi.org/10.1179/1743280411Y.0000000012
19. Delfini A, Albano M, Vricella A, Santoni F, Rubini G, Pastore R, Marchetti M. Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment. Materials (Basel) 2018; 11(9):1730. DOI: https://doi.org/10.3390/ma11091730
20. Ungar EW. Ablation Thermal Protection Systems: Suitability of ablation systems to thermal protection depends on complex physical and chemical processes. Science 1967; 158(3802):740-744. DOI: https://doi.org/10.1126/science.158.3802.740
21. Bahramian A, Kokabi M. Ablation mechanism of polymer layered silicate nanocomposite heat shield. J Hazard Mater 2008; 166:445-454. DOI: https://doi.org/10.1016/j.jhazmat.2008.11.061
2. Miao W, Li Q, Li J, Zhou J, Cheng X. Thermal environment and aeroheating mechanism of protuberances on mars entry capsule. Space Sci Technol 2021; 2021:9754068, DOI: https://doi.org/10.34133/2021/9754068
3. Pirolini A. Materials Used in Space Shuttle Thermal Protection Systems. AZO Materials 2014; Last access: May 20, 2022. Available at: https://www.azom.com/article.aspx?ArticleID=11443
4. Thomas DS, Gilbert SW. Costs and cost effectiveness of additive manufacturing: A literature review and discussion. National Institute of Standards and Technology (NIST) Special Publication 1176, 2014; DOI: http://dx.doi.org/10.6028/NIST.SP.1176
5. Pulci G, TirilloJ, Marra F, Fossati F, Bartuli C, Valente T. Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties. Compos A Appl Sci Manuf 2010; 41:1483-1490. DOI: https://doi.org/10.1016/j.compositesa.2010.06.010
6. Li Z, Ma J. Experimental study on mechanical properties of the sandwich composite structure reinforced by basalt fiber and Nomex honeycomb. Materials 2020; 13(8):1870. DOI: https://doi.org/10.3390/ma13081870
7. Hanif A, Lu Z, Cheng Y. Diao S, Li Z. Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites. Int J Concr Struct Mater 2017; 11:99-113. DOI: https://doi.org/10.1007/s40069-016-0184-1
8. Debnath T, Debnath B, Lake RK. Thermal conductivity of the quasi-one-dimensional materials TaSe3 and ZrTe3. Phys Rev Materials 2021; 5:034010. DOI: https://doi.org/10.1103/PhysRevMaterials.5.034010
9. O'Regan M, Preto P, Stranne C, Jakobsson M, Koshurnikov A. Surface heat flow measurements from the East Siberian continental slope and southern Lomonosov Ridge, Arctic Ocean. Geochem Geophys Geosyst 2016; 17:1608-1622, DOI: https://doi.org/10.1002/2016GC006284
10. Wang J, Li Y, Liu X, Shen C, Zhang H, Xiong K. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China.Chinese Journal of Aeronautics 2021; 34(2):1-27. DOI: https://doi.org/10.1016/j.cja.2020.06.021
11. Dutta M, Matteppanavar S, Prasad MVD, Pandey J, Warankar A, Mandal P, Soni A, Waghmare UV, Biswas K. Ultralow thermal conductivity in chain-like TlSe Due to inherent Tl+ rattling. J Am Cheml Soc 2019; 141(51):20293-20299. DOI: https://doi.org/10.1021/jacs.9b10551
12. Riccucci G, Pezzana L, Lantean S, Tori A, Spriano S, Sangermano M. Investigation of the thermal conductivity of silicon-base composites: The effect of filler materials and characteristic on thermo-mechanical response of silicon composite. Appl Sci 2021; 11:5663. DOI: https://doi.org/10.3390/app11125663
13. Maurizio N, Marco R, Luigi T, Debora P. High temperature composites from renewable resources: A perspective on current technological challenges for the manufacturing of non-oil based high char yield matrices and carbon fibers. Front Mater 2022; 9:805131. DOI: https://doi.org/10.3389/fmats.2022.805131
14. Miao Y, Geng Y, Li X, Liu X. Tension system design based on heated-mandrel winding process. J Comp Mater 2022; 56(7):1091-1105. DOI: https://doi.org/10.1177/00219983211069200
15. Li H, Wang N, Han X, Fan B, Feng Z, Guo AS. Simulation of thermal behavior of glass fiber/phenolic composites exposed to heat flux on one side. Materials (Basel) 2020; 13(2):421. DOI: https://doi.org/10.3390/ma13020421
16. Dorsey J, Chen R, Poteet C, Wurster K. Metallic thermal protection system requirements, environments, and integrated concepts. J Spacecraft Rocket 2004; 41:162-172. DOI: https://doi.org/10.2514/1.9173
17. Sun C, Xia R, Shi H, Yao H, Liu X, Hou J, Huang F, Yip H-L, Cao Y. Heat-Insulating Multifunctional Semitransparent Polymer Solar Cells. Joule 2018; 2(9):1816-1826.DOI: https://doi.org/10.1016/j.joule.2018.06.006
18. Fahrenholtz W, Hilmas G. Oxidation of ultra-high temperature transition metal diboride ceramics. Int Mater Rev 2012; 57:61-72. DOI: https://doi.org/10.1179/1743280411Y.0000000012
19. Delfini A, Albano M, Vricella A, Santoni F, Rubini G, Pastore R, Marchetti M. Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment. Materials (Basel) 2018; 11(9):1730. DOI: https://doi.org/10.3390/ma11091730
20. Ungar EW. Ablation Thermal Protection Systems: Suitability of ablation systems to thermal protection depends on complex physical and chemical processes. Science 1967; 158(3802):740-744. DOI: https://doi.org/10.1126/science.158.3802.740
21. Bahramian A, Kokabi M. Ablation mechanism of polymer layered silicate nanocomposite heat shield. J Hazard Mater 2008; 166:445-454. DOI: https://doi.org/10.1016/j.jhazmat.2008.11.061
How to Cite
Willard, J. M. (2022). Low-Density Resin-Based Ablative Heat Protection Materials. Science Insights, 40(6), 541–544. https://doi.org/10.15354/si.22.re063
Issue
Section
Review
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.