##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 30, 2022

Wilhelm Bahia  

Abstract

Biochar is a porous carbon-rich substance generated by anoxic pyrolysis of biomass. Biochar has a high adsorption capacity for organic contaminants in water and soil environmental media due to its large specific surface area and surface physical and chemical characteristics. The effects of biochar application on the adsorption-desorption behavior and bioavailability of pesticides in soil are illustrated in this paper; biochar can strongly adsorb pesticides in soil due to its loose and porous properties, large specific surface area and surface energy, and highly aromatic structure. Residual pesticide pollutants are reduced, as is desorption hysteresis, which reduces pesticide desorption. Furthermore, the use of biochar reduced the absorption and efficacy of pesticides in soil. At the same time, it describes the present gaps in research on the influence of biochar on pesticide migration mechanisms and its application in pesticide pollution control, and it identifies the major scientific issues that need to be addressed. Finally, the potential application of biochar in pesticide pollution management is discussed.

##plugins.themes.bootstrap3.article.details##

Keywords

Biochar, Pesticide, Adsorption, Desorption, Bioavailability

References
1. Aktar MW, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip Toxicol 2009; 2(1):1-12. DOI: https://doi.org/10.2478/v10102-009-0001-7

2. Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011; 8(5):1402-1419. DOI: https://doi.org/10.3390/ijerph8051402

3. Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur 2017; 6(2): 48-60. Doi: https://doi.org/10.1002/fes3.108

4. Rahman A. How to remediate heavy metal contamination in soil? Sci Insights 2022; 41(4):669-674. DOI: https://doi.org/10.15354/si.22.re082

5. Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: A review. Bioengineered 2021; 12(2):10269-10301. DOI: https://doi.org/10.1080/21655979.2021.1993536

6. Joseph S, Cowie AL, Van Zwieten L, Bolan N, Budai A, Buss W, Cayuela ML, Graber ER, Ippolito JA, Kuzyakov Y, Luo Y, Ok YS, Palansooriya KN, Shepherd J, Stephens S, Weng Z, Lehmann J. How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021; 13:1731-1764. DOI: https://doi.org/10.1111/gcbb.12885

7. Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Rep (Amst) 2020; 28:e00570. DOI: https://doi.org/10.1016/j.btre.2020.e00570

8. Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci Total Environ 2022; 826:153956. DOI: https://doi.org/10.1016/j.scitotenv.2022.153956

9. Glaser B, Parr M, Braun C, Kopolo G. Biochar is carbon negative. Nature Geosci 2009; 2:2. DOI: https://doi.org/10.1038/ngeo395

10. Tenenbaum DJ. Biochar: Carbon mitigation from the ground up. Environ Health Perspect 2009; 117(2):A70-A73. DOI: https://doi.org/10.1289/ehp.117-a70

11. Fawzy S, Osman AI, Yang H, Doran J, Rooney DW. Industrial biochar systems for atmospheric carbon removal: A review. Environ Chem Lett 2021; 19:3023-3055. DOI: https://doi.org/10.1007/s10311-021-01210-1

12. George M. Unravelling the impact of potentially toxic elements and biochar on soil: A review. Environ Challenges 2022; 8:100540. DOI: https://doi.org/10.1016/j.envc.2022.100540

13. Edeh IG, Mašek O. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. Eur J Soil Sci 2022; 73(1):e13138. DOI: https://doi.org/10.1111/ejss.13138

14. Huang PH, Jhan JW, Cheng YM, Cheng HH. Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide. ScientificWorldJournal 2014; 2014:937867. DOI: https://doi.org/10.1155/2014/937867

15. Tomczyk, A., Sokołowska, Z. & Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 2020; 19:191-215. DOI: https://doi.org/10.1007/s11157-020-09523-3

16. Zhang X, Zhang P, Yuan X, Li Y, Han L. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresour Technol 2020; 296:122318. DOI: https://doi.org/10.1016/j.biortech.2019.122318

17. Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK. Environmental application of biochar: Current status and perspectives. Bioresour Technol 2017; 246:110-122. DOI: https://doi.org/10.1016/j.biortech.2017.08.122

18. Laghari M, Hu Z, Mirjat MS, Xiao B, Tagar AA, Hu M. Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth. J Sci Food Agric 2016; 96(1):199-206. DOI: https://doi.org/10.1002/jsfa.7082

19. Wang H, Nan Q, Waqas M, Wu W. Stability of biochar in mineral soils: Assessment methods, influencing factors and potential problems. Sci Total Environ 2022; 806(Pt 4):150789. DOI: https://doi.org/10.1016/j.scitotenv.2021.150789

20. Zhang Q, Cai H, Yi W, Lei H, Liu H, Wang W, Ruan R. Biocomposites from organic solid wastes derived biochars: A review. Materials (Basel) 2020; 13(18):3923. DOI: https://doi.org/10.3390/ma13183923

21. Kumari N, Mohan C. Basics of clay minerals and their characteristic properties. In (Ed.), Clay and Clay Minerals. IntechOpen. 2021. DOI: https://doi.org/10.5772/intechopen.97672

22. Cara IG, Țopa D, Puiu I, Jităreanu G. Biochar a promising strategy for pesticide-contaminated soils. Agriculture 2022; 12(10):1579. DOI: https://doi.org/10.3390/agriculture12101579

23. Mielke KC, Mendes KF, de Sousa RN, de Paula Medeiros BA. Degradation Process of Herbicides in Biochar-Amended Soils: Impact on Persistence and Remediation. In K.F. Mendes, R.o. de Sousa, & K.C. Mielke (Eds.), Biodegradation Technology of Organic and Inorganic Pollutants. IntechOpen. 2022. DOI: https://doi.org/10.5772/intechopen.101916

24. Safaei Khorram M, Zhang Q, Lin D, Zheng Y, Fang H, Yu Y. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. J Environ Sci (China) 2016; 44:269-279. DOI: https://doi.org/10.1016/j.jes.2015.12.027

25. Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ Chem Lett 2022; 20(4):2385-2485. DOI: https://doi.org/10.1007/s10311-022-01424-x

26. Raffa CM, Chiampo F. Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering (Basel) 2021; 8(7):92. DOI: https://doi.org/10.3390/bioengineering8070092

27. Ambaye TG, Vaccari M, van Hullebusch ED, Amrane A, Rtimi S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol 2021; 18:3273-3294. DOI: https://doi.org/10.1007/s13762-020-03060-w

28. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem Eng J 2019; 366:608-621. DOI: https://doi.org/10.1016/j.cej.2019.02.119

29. Ippolito JA, Cui L, Kammann C. Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizabal T, Cayuela ML, Sigua G, Novak J, Spokas K, Borchard N. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020; 2:421-438. DOI: https://doi.org/10.1007/s42773-020-00067-x

30. Zhu L, Zhao N, Tong L, Lv Y. Structural and adsorption characteristics of potassium carbonate activated biochar. RSC Adv 2018; 8(37):21012-21019. DOI: https://doi.org/10.1039/c8ra03335h

31. Zhu D, Hyun S, Pignatello JJ, Lee LS. Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption. Environ Sci Technol 2004; 38(16):4361-4368. DOI: https://doi.org/10.1021/es035379e

32. Sigmund G, Gharasoo M, Hüffer T, Hofmann T. Comment on predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning. Environ Sci Technol 2020; 54(18):11636-11637. DOI: https://doi.org/10.1021/acs.est.0c03931

33. Chai Y, Currie RJ, Davis JW, Wilken M, Martin GD, Fishman VN, Ghosh U. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ Sci Technol 2012; 46(2):1035-1043. DOI: https://doi.org/10.1021/es2029697

34. Kinnunen N, Laurén AA, Pumpanen J. Nieminen TM, Palviainen M. Biochar capacity to mitigate acidity and adsorb metals – Laboratory tests for acid sulfate soil drainage water. Water Air Soil Pollut 2021; 232:464. DOI: https://doi.org/10.1007/s11270-021-05407-6

35. Chen X, Yu G, Chen Y, Tang S, Su Y. Cow dung-based biochar materials prepared via mixed base and its application in the removal of organic pollutants. Int J Mol Sci 2022; 23(17):10094. DOI: https://doi.org/10.3390/ijms231710094

36. Yang Y, Sheng G, Huang M. Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 2006; 354(2-3):170-178. DOI: https://doi.org/10.1016/j.scitotenv.2005.01.026

37. Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N. Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 2010; 181(1-3):121-126. DOI: https://doi.org/10.1016/j.jhazmat.2010.04.103

38. Wang D, Fonte SJ, Parikh SJ, Six J, Scow KM. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 2017; 303:110-117. DOI: https://doi.org/10.1016/j.geoderma.2017.05.027

39. Luo Z, Yao B, Yang X, Wang L, Xu Z, Yan X, Tian L, Zhou H, Zhou Y. Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere 2022; 287(Pt 2):132113. DOI: https://doi.org/10.1016/j.chemosphere.2021.132113

40. Pérez-Lucas G, Vela N, Aatik AE, Navarro S. Environmental Risk of Groundwater Pollution by Pesticide Leaching through the Soil Profile. In M. Larramendy, & S. Soloneski (Eds.), Pesticides - Use and Misuse and Their Impact in the Environment. IntechOpen. 2018. DOI: https://doi.org/10.5772/intechopen.82418

41. Rasool S, Rasool T, Gani KM. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem Eng J Adv 2022; 11:100301. DOI: https://doi.org/10.1016/j.ceja.2022.100301

42. Rojas R, Repetto G, Morillo J, Usero J. Sorption/desorption and kinetics of atrazine, chlorfenvinphos, endosulfan sulfate and trifluralin on agro-industrial and composted organic wastes. Toxics 2022 Feb 14;10(2):85. DOI: https://doi.org/10.3390/toxics10020085

43. Pan L, Mao L, Zhang H, Wang P, Wu C, Xie J, Yu B, Sial MU, Zhang L, Zhang Y, Zhu L, Jiang H, Zheng Y, Liu X. modified biochar as a more promising amendment agent for remediation of pesticide-contaminated soils: Modification methods, mechanisms, applications, and future perspectives. Appl Sci 2022; 12(22):11544. DOI: https://doi.org/10.3390/app122211544

44. Yu XY, Ying GG, Kookana RS. Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 2006; 54(22):8545-50. DOI: https://doi.org/10.1021/jf061354y

45. Vagi MC, Petsas AS, Kostopoulou MN, Lekkas TD. Adsorption and desorption processes of the organophosphorus pesticides, dimethoate and fenthion, onto three Greek agricultural soils. Int J Environ Anal Chem 2010; 90:3-6, 369-389. DOI: https://doi.org/10.1080/03067310903194980

46. Ren J, Weng H, Li B, Chen F, Liu J, Song Z.The Influence mechanism of pore structure of tectonically deformed coal on the adsorption and desorption hysteresis. Front Earth Sci 2022; 10: 841353. DOI: https://doi.org/10.3389/feart.2022.841353

47. Liu Y, Lonappan L, Brar SK, Yang S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci Total Environ 2018; 645:60-70. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.099

48. Bielská L, Škulcová L, Neuwirthová N, Cornelissen G, Hale SE. Sorption, bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils. Sci Total Environ 2018; 624:78-86. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.098

49. Yu XY, Ying GG, Kookana RS. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 2009; 76(5):665-671. DOI: https://doi.org/10.1016/j.chemosphere.2009.04.001

50. Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environ Sci Technol 2022 Oct 27. In press. DOI: https://doi.org/10.1021/acs.est.2c02976

51. Graber E, Tsechansky L, Gerstl Z, Lew B. High surface area biochar negatively impacts herbicide efficacy. Plant Soil 2011; 353:95-106. DOI: https://doi.org/10.1007/s11104-011-1012-7
How to Cite
Bahia, W. (2022). Adsorption-Desorption Behavior and Pesticide Bioavailability of Biochar in Soil. Science Insights, 41(6), 725–731. https://doi.org/10.15354/si.22.re093
Section
Review