Adsorption-Desorption Behavior and Pesticide Bioavailability of Biochar in Soil
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Biochar is a porous carbon-rich substance generated by anoxic pyrolysis of biomass. Biochar has a high adsorption capacity for organic contaminants in water and soil environmental media due to its large specific surface area and surface physical and chemical characteristics. The effects of biochar application on the adsorption-desorption behavior and bioavailability of pesticides in soil are illustrated in this paper; biochar can strongly adsorb pesticides in soil due to its loose and porous properties, large specific surface area and surface energy, and highly aromatic structure. Residual pesticide pollutants are reduced, as is desorption hysteresis, which reduces pesticide desorption. Furthermore, the use of biochar reduced the absorption and efficacy of pesticides in soil. At the same time, it describes the present gaps in research on the influence of biochar on pesticide migration mechanisms and its application in pesticide pollution control, and it identifies the major scientific issues that need to be addressed. Finally, the potential application of biochar in pesticide pollution management is discussed.
##plugins.themes.bootstrap3.article.details##
Biochar, Pesticide, Adsorption, Desorption, Bioavailability
2. Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011; 8(5):1402-1419. DOI: https://doi.org/10.3390/ijerph8051402
3. Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur 2017; 6(2): 48-60. Doi: https://doi.org/10.1002/fes3.108
4. Rahman A. How to remediate heavy metal contamination in soil? Sci Insights 2022; 41(4):669-674. DOI: https://doi.org/10.15354/si.22.re082
5. Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: A review. Bioengineered 2021; 12(2):10269-10301. DOI: https://doi.org/10.1080/21655979.2021.1993536
6. Joseph S, Cowie AL, Van Zwieten L, Bolan N, Budai A, Buss W, Cayuela ML, Graber ER, Ippolito JA, Kuzyakov Y, Luo Y, Ok YS, Palansooriya KN, Shepherd J, Stephens S, Weng Z, Lehmann J. How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021; 13:1731-1764. DOI: https://doi.org/10.1111/gcbb.12885
7. Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Rep (Amst) 2020; 28:e00570. DOI: https://doi.org/10.1016/j.btre.2020.e00570
8. Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci Total Environ 2022; 826:153956. DOI: https://doi.org/10.1016/j.scitotenv.2022.153956
9. Glaser B, Parr M, Braun C, Kopolo G. Biochar is carbon negative. Nature Geosci 2009; 2:2. DOI: https://doi.org/10.1038/ngeo395
10. Tenenbaum DJ. Biochar: Carbon mitigation from the ground up. Environ Health Perspect 2009; 117(2):A70-A73. DOI: https://doi.org/10.1289/ehp.117-a70
11. Fawzy S, Osman AI, Yang H, Doran J, Rooney DW. Industrial biochar systems for atmospheric carbon removal: A review. Environ Chem Lett 2021; 19:3023-3055. DOI: https://doi.org/10.1007/s10311-021-01210-1
12. George M. Unravelling the impact of potentially toxic elements and biochar on soil: A review. Environ Challenges 2022; 8:100540. DOI: https://doi.org/10.1016/j.envc.2022.100540
13. Edeh IG, Mašek O. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. Eur J Soil Sci 2022; 73(1):e13138. DOI: https://doi.org/10.1111/ejss.13138
14. Huang PH, Jhan JW, Cheng YM, Cheng HH. Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide. ScientificWorldJournal 2014; 2014:937867. DOI: https://doi.org/10.1155/2014/937867
15. Tomczyk, A., Sokołowska, Z. & Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 2020; 19:191-215. DOI: https://doi.org/10.1007/s11157-020-09523-3
16. Zhang X, Zhang P, Yuan X, Li Y, Han L. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresour Technol 2020; 296:122318. DOI: https://doi.org/10.1016/j.biortech.2019.122318
17. Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK. Environmental application of biochar: Current status and perspectives. Bioresour Technol 2017; 246:110-122. DOI: https://doi.org/10.1016/j.biortech.2017.08.122
18. Laghari M, Hu Z, Mirjat MS, Xiao B, Tagar AA, Hu M. Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth. J Sci Food Agric 2016; 96(1):199-206. DOI: https://doi.org/10.1002/jsfa.7082
19. Wang H, Nan Q, Waqas M, Wu W. Stability of biochar in mineral soils: Assessment methods, influencing factors and potential problems. Sci Total Environ 2022; 806(Pt 4):150789. DOI: https://doi.org/10.1016/j.scitotenv.2021.150789
20. Zhang Q, Cai H, Yi W, Lei H, Liu H, Wang W, Ruan R. Biocomposites from organic solid wastes derived biochars: A review. Materials (Basel) 2020; 13(18):3923. DOI: https://doi.org/10.3390/ma13183923
21. Kumari N, Mohan C. Basics of clay minerals and their characteristic properties. In (Ed.), Clay and Clay Minerals. IntechOpen. 2021. DOI: https://doi.org/10.5772/intechopen.97672
22. Cara IG, Țopa D, Puiu I, Jităreanu G. Biochar a promising strategy for pesticide-contaminated soils. Agriculture 2022; 12(10):1579. DOI: https://doi.org/10.3390/agriculture12101579
23. Mielke KC, Mendes KF, de Sousa RN, de Paula Medeiros BA. Degradation Process of Herbicides in Biochar-Amended Soils: Impact on Persistence and Remediation. In K.F. Mendes, R.o. de Sousa, & K.C. Mielke (Eds.), Biodegradation Technology of Organic and Inorganic Pollutants. IntechOpen. 2022. DOI: https://doi.org/10.5772/intechopen.101916
24. Safaei Khorram M, Zhang Q, Lin D, Zheng Y, Fang H, Yu Y. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. J Environ Sci (China) 2016; 44:269-279. DOI: https://doi.org/10.1016/j.jes.2015.12.027
25. Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ Chem Lett 2022; 20(4):2385-2485. DOI: https://doi.org/10.1007/s10311-022-01424-x
26. Raffa CM, Chiampo F. Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering (Basel) 2021; 8(7):92. DOI: https://doi.org/10.3390/bioengineering8070092
27. Ambaye TG, Vaccari M, van Hullebusch ED, Amrane A, Rtimi S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol 2021; 18:3273-3294. DOI: https://doi.org/10.1007/s13762-020-03060-w
28. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem Eng J 2019; 366:608-621. DOI: https://doi.org/10.1016/j.cej.2019.02.119
29. Ippolito JA, Cui L, Kammann C. Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizabal T, Cayuela ML, Sigua G, Novak J, Spokas K, Borchard N. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020; 2:421-438. DOI: https://doi.org/10.1007/s42773-020-00067-x
30. Zhu L, Zhao N, Tong L, Lv Y. Structural and adsorption characteristics of potassium carbonate activated biochar. RSC Adv 2018; 8(37):21012-21019. DOI: https://doi.org/10.1039/c8ra03335h
31. Zhu D, Hyun S, Pignatello JJ, Lee LS. Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption. Environ Sci Technol 2004; 38(16):4361-4368. DOI: https://doi.org/10.1021/es035379e
32. Sigmund G, Gharasoo M, Hüffer T, Hofmann T. Comment on predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning. Environ Sci Technol 2020; 54(18):11636-11637. DOI: https://doi.org/10.1021/acs.est.0c03931
33. Chai Y, Currie RJ, Davis JW, Wilken M, Martin GD, Fishman VN, Ghosh U. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ Sci Technol 2012; 46(2):1035-1043. DOI: https://doi.org/10.1021/es2029697
34. Kinnunen N, Laurén AA, Pumpanen J. Nieminen TM, Palviainen M. Biochar capacity to mitigate acidity and adsorb metals – Laboratory tests for acid sulfate soil drainage water. Water Air Soil Pollut 2021; 232:464. DOI: https://doi.org/10.1007/s11270-021-05407-6
35. Chen X, Yu G, Chen Y, Tang S, Su Y. Cow dung-based biochar materials prepared via mixed base and its application in the removal of organic pollutants. Int J Mol Sci 2022; 23(17):10094. DOI: https://doi.org/10.3390/ijms231710094
36. Yang Y, Sheng G, Huang M. Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 2006; 354(2-3):170-178. DOI: https://doi.org/10.1016/j.scitotenv.2005.01.026
37. Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N. Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 2010; 181(1-3):121-126. DOI: https://doi.org/10.1016/j.jhazmat.2010.04.103
38. Wang D, Fonte SJ, Parikh SJ, Six J, Scow KM. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 2017; 303:110-117. DOI: https://doi.org/10.1016/j.geoderma.2017.05.027
39. Luo Z, Yao B, Yang X, Wang L, Xu Z, Yan X, Tian L, Zhou H, Zhou Y. Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere 2022; 287(Pt 2):132113. DOI: https://doi.org/10.1016/j.chemosphere.2021.132113
40. Pérez-Lucas G, Vela N, Aatik AE, Navarro S. Environmental Risk of Groundwater Pollution by Pesticide Leaching through the Soil Profile. In M. Larramendy, & S. Soloneski (Eds.), Pesticides - Use and Misuse and Their Impact in the Environment. IntechOpen. 2018. DOI: https://doi.org/10.5772/intechopen.82418
41. Rasool S, Rasool T, Gani KM. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem Eng J Adv 2022; 11:100301. DOI: https://doi.org/10.1016/j.ceja.2022.100301
42. Rojas R, Repetto G, Morillo J, Usero J. Sorption/desorption and kinetics of atrazine, chlorfenvinphos, endosulfan sulfate and trifluralin on agro-industrial and composted organic wastes. Toxics 2022 Feb 14;10(2):85. DOI: https://doi.org/10.3390/toxics10020085
43. Pan L, Mao L, Zhang H, Wang P, Wu C, Xie J, Yu B, Sial MU, Zhang L, Zhang Y, Zhu L, Jiang H, Zheng Y, Liu X. modified biochar as a more promising amendment agent for remediation of pesticide-contaminated soils: Modification methods, mechanisms, applications, and future perspectives. Appl Sci 2022; 12(22):11544. DOI: https://doi.org/10.3390/app122211544
44. Yu XY, Ying GG, Kookana RS. Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 2006; 54(22):8545-50. DOI: https://doi.org/10.1021/jf061354y
45. Vagi MC, Petsas AS, Kostopoulou MN, Lekkas TD. Adsorption and desorption processes of the organophosphorus pesticides, dimethoate and fenthion, onto three Greek agricultural soils. Int J Environ Anal Chem 2010; 90:3-6, 369-389. DOI: https://doi.org/10.1080/03067310903194980
46. Ren J, Weng H, Li B, Chen F, Liu J, Song Z.The Influence mechanism of pore structure of tectonically deformed coal on the adsorption and desorption hysteresis. Front Earth Sci 2022; 10: 841353. DOI: https://doi.org/10.3389/feart.2022.841353
47. Liu Y, Lonappan L, Brar SK, Yang S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci Total Environ 2018; 645:60-70. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.099
48. Bielská L, Škulcová L, Neuwirthová N, Cornelissen G, Hale SE. Sorption, bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils. Sci Total Environ 2018; 624:78-86. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.098
49. Yu XY, Ying GG, Kookana RS. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 2009; 76(5):665-671. DOI: https://doi.org/10.1016/j.chemosphere.2009.04.001
50. Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environ Sci Technol 2022 Oct 27. In press. DOI: https://doi.org/10.1021/acs.est.2c02976
51. Graber E, Tsechansky L, Gerstl Z, Lew B. High surface area biochar negatively impacts herbicide efficacy. Plant Soil 2011; 353:95-106. DOI: https://doi.org/10.1007/s11104-011-1012-7

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.