Exploring Pre-service Chemistry Teachers’ Understanding of Scientific Inquiry Skills through the Chemistry Laboratory Course
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Scientific inquiry is a process in which individuals pose questions, think critically and engage in problem-solving research and investigation. It enables the explanation of observable scientific phenomena, problems, or events based on evidence. Through this process, students not only find answers to their questions but also structure their knowledge, opening the door to scientific practice. Scientific inquiry skills consist of six process components: defining the question or problem, developing a model to answer the question or find a solution to the problem, planning and realizing the research, analyzing and interpreting data, making evidence-based explanations and producing solutions, and evaluating and sharing knowledge. The aim of this study is to determine the readiness of pre-service chemistry teachers for the competency-based curriculum. Conducted as action research, the study involved 16 pre-service chemistry teachers over 12 weeks during the chemistry laboratory course in the fall semester of the 2023-2024 academic year. Data collection tools included open-ended questionnaire items to gauge pre-service teachers’ perceptions of scientific inquiry skills, an activity sheet designed to foster these skills, and a rubric for evaluation. The study analysed the use of the components of scientific inquiry skills by pre-service teachers. The results indicated that the pre-service chemistry teachers most frequently utilized the components ‘defining the question or problem’ and ‘planning and conducting research,’ which are subcomponents of scientific inquiry. However, the components ‘making evidence-based explanations and producing solutions’ and ‘evaluating and sharing knowledge’ were used less frequently in the activities they designed.
Downloads
##plugins.themes.bootstrap3.article.details##
Chemistry Education Curriculum, Pre-Service Teachers, Scientific Inquiry Skills, Skill-Based Teaching
No funding sources declared.
Aktamiş, H. (2007). Fen eğitiminde bilimsel süreç becerilerinin bilimsel yaratıcılığa etkisi: ilköğretim 7. sınıf fizik ünitesi örneği [Unpublished doctoral dissertation]. Dokuz Eylul University, Izmir
Applefield, J. M., Huber, R., & Moallem, M. (2000). Constructivism in theory and practice: Toward a better understanding. The High School Journal, 84(2), 35-53. DOI: https://doi.org/10.2307/40364404
Bassot, B. (2024). The reflective journal. Bloomsbury Publishing. ISBN: 9781350422995
Başdaş, E. (2007). İlköğretim fen eğitiminde, basit malzemelerle yapılan fen aktivitelerinin bilimsel süreç becerilerine, akademik başarıya ve motivasyona etkisi [Unpublished Master’s thesis], Celal Bayar University, Manisa
Biesta, G. (2007). Why “what works” won’t work: Evidence‐based practice and the democratic deficit in educational research. Educational theory, 57(1), 1-22. DOI: https://doi.org/10.1111/j.1741-5446.2006.00241.x
Bonache, J. (2021). The challenge of using a ‘non‐positivist’paradigm and getting through the peer‐review process. Human Resource Management Journal, 31(1), 37-48. DOI: https://doi.org/10.1111/1748-8583.12319
Burns, M., Bally, J., Burles, M., Holtslander, L., & Peacock, S. (2022). Constructivist grounded theory or interpretive phenomenology? Methodological choices within specific study contexts. International Journal of Qualitative Methods, 21, 16094069221077758. DOI: https://doi.org/10.1177/16094069221077758
Bybee R.W. (1997). Towards an understanding of scientific literacy. In: W. Gräber & C. Bolte. (Eds.). Scientific literacy. An international symposium (pp. 37-68). Institut für die Pädagogik der Naturwissenschaften (IPN): Kiel, Germany
Bybee, R. W. (2006). Scientific inquiry and science teaching. In Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (pp. 1-14). Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/978-1-4020-5814-1_1
Chu, S. K. W., Reynolds, R. B., Tavares, N. J., Notari, M., & Lee, C. W. Y. (2021). 21st century skills development through inquiry-based learning from theory to practice. Springer International Publishing. DOI: https://doi.org/10.1007/978-981-10-2481-8
Coburn, C. E., Honig, M. I., & Stein, M. K. (2009). What’s the evidence on districts’ use of evidence. The role of research in educational improvement, 67-87.
Deboer, G. E. (2006). Historical perspectives on inquiry teaching in schools. In Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (p. 17-35). Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/978-1-4020-5814-1_2
Derilo, R. C. (2019). Basic and integrated science process skills acquisition and science achievement of seventh-grade learners. European Journal of Education Studies. DOI: https://doi.org/10.5281/zenodo.265254
Dewey, J. (1929). The quest for certainty: A study of the relation of knowledge and action (Vol. 28). Putnam Adult. ISBN: 0399501916, 9780399501913
Driver, R. & Erickson, G. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37-60. DOI: https://doi.org/10.1080/03057268308559904
Elliott, J. (2001). Making evidence‐based practice educational. British educational research journal, 27(5), 555-574. DOI: https://doi.org/10.1080/01411920120095735
European Commission and Directorate-General for Research and Innovation. (2015). Science education for responsible citizenship: Report to the European Commission of the expert group on science education. Publications Office. DOI: https://doi.org/10.2777/12626
Flick, L. B., & Lederman, N. G. (2006). Scientific inquiry and nature of science. Kluwer Academic Publishers.
Gichuru, M. J. (2017). The interpretive research paradigm: A critical review of is research methodologies. International Journal of Innovative Research and Advanced Studies (IJIRAS), 4(2), 1-5. Available at: https://www.ijiras.com/2017/Vol_4-Issue_2/paper_1.pdf
Glesne, C. & Peshkin, A. (1992). Becoming qualitative researchers: An Introduction. Longman: Longman.
Hanauer, D. I., Jacobs-Sera, D., Pedulla, M. L., Cresawn, S. G., Hendrix, R. W., & Hatfull, G. F. (2006). Teaching scientific inquiry. Science, 314(5807), 1880/1881.DOI: https://doi.org/10.1126/science.1136796
Jack, G. U. (2013). The influence of identified student and school variables on students’ science process skills acquisition. Journal of Education and Practice, 4(5), 16-22. Available at: https://api.semanticscholar.org/CorpusID:212451018
Junjie, M., & Yingxin, M. (2022). The Discussions of Positivism and Interpretivism. Online Submission, 4(1), 10-14. DOI: https://doi.org/10.36348/gajhss.2022.v04i01.002
Kabapınar, F. (2021). Pozitivist ve yorumlamacı felsefeyle ilişkisi bağlamında eğitim araştırmalarına bakmak. kuramdan uygulamaya sosyal bilgiler ve tarih öğretiminde eylem araştırmaları. (editor: Y. Kabapınar), Ankara, Pegem A. DOI: https://doi.org/10.14527/9786257582056
Kabapınar, F., Tekin, D., & Tetik, S. (2023). K12 Fen Bilimleri Alan Becerileri Eğitimi Kapsamında Hipotez Oluşturma Becerisinin Öğretimi ve Etkisinin Değerlendirilmesi: Kimya Dersinden Uygulamalar. Milli Eğitim Dergisi, 52(1), 287-322. DOI: https://doi.org/10.37669/milliegitim.1309215
Kemmis, S. (1988). Action research. in J. P. Keeves (Ed.). Educational Research, Methodology, and Measurement: An International Handbook (pp.177-190). Oxford: Pergamon.
Kunisch, S., Denyer, D., Bartunek, J. M., Menz, M., & Cardinal, L. B. (2023). Review research as scientific inquiry. Organizational Research Methods, 26(1), 3-45. DOI: https://doi.org/10.1177/1094428122112729
Lederman & S. K. Abell (Eds.) (2013). Handbook of research on science education (Vol. 2, pp.) DOI: https://doi.org/10.4324/9780203097267
Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L, Meyer, A. A. & Schwartz, R. S. (2014). Meaningful assessment of learners’ understandings about scientific inquiry—the views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65-83. DOI: https://doi.org/10.1002/tea.21125
Lederman, J., Lederman, N., Bartels, S., Jimenez, J., Akubo, M., Aly, S., ... & Zhou, Q. (2019). An international collaborative investigation of beginning seventh grade students’ understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 56(4), 486-515. DOI: https://doi.org/10.1002/tea.21512
Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3).
Lewin, K. (1946) Action research and minority problems. Journal of Social Issues, 2, 34- 46. DOI: https://doi.org/10.1111/j.1540-4560.1946.tb02295.x
Lou, Y., Blanchard, P., & Kennedy, E. (2015). Development and validation of a science inquiry skills assessment. Journal of Geoscience Education, 63(1), 73-85. DOI: https://doi.org/10.5408/14-028.1
Martin, E., & Osherson, D. N. (1998). Elements of scientific inquiry. MIT Press.
Masters, Janet. (1995). The history of action research. In I. Hughes (Ed) Action research electronic reader, The University of Sydney
Ministry of National Education of Turkey (MoNE) (2023a). K12 Beceriler Çerçevesi Türkiye Bütüncül Modeli. Ministry of National Education, Board of Education
Ministry of National Education of Turkey (MoNE) (2023b). K12 Beceriler Çerçevesi Türkiye Bütüncül Modeli Öğretmen Kılavuzu. Ministry of National Education, Board of Education.
Miller, J. D. (1983). Scientific Literacy: A Conceptual and Empirical Review. Daedalus, Spring, 112(2), 29- 48. Available at: https://www.jstor.org/stable/20024852
Ministry of National Education of Turkey (MoNE) (2024). Chemistry Education Curriculum for Secondary Grades (9, 10, 11, and 12th Grades), Ministry of National Education, Board of Education.
Ministry of National Education of Turkey (MoNE) (2024). Türkiye Yüzyılı Maarif Modeli (TYMM). Ministry of National Education, Board of Education
Mills, G. E. (2003). Action research: A Guide for the Teacher Researcher. (2nd ed.). Upper Saddle River, NJ: Merrill Prentice Hall.
National Council for Curriculum and Assessment [NCCA]. (2015). Junior cycle science: Curriculum specification. Author. Available at: https://www.curriculumonline.ie/getmedia/f668d804-6283-4d4a-84ab-c71e5b37d198/Specification-for-Junior-Cycle-Science.pdf
National Research Council [NRC] (1996). National Science Education Standards. National Academy Press. ISBN: 978-0-309-05326-6.
National Research Council [NRC] (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press. DOI: https://doi.org/10.17226/9596
National Research Council [NRC] (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academy Press. DOI: https://doi.org/10.17226/13165
Nelson, B. C., & Ketelhut, D. J. (2007). Scientific inquiry in educational multi-user virtual environments. Educational Psychology Review, 19(3), 265-283. DOI: https://doı.org/10.1007/s10648-007-9048-1
Nickerson, C. (2022). Interpretivism paradigm & research philosophy. Simply Sociology, 5. Novak, A. (1964). Scientific inquiry. Bioscience, 14(10), 25-28. DOI: https://doi.org/10.2307/1293366
Pilarska, J. (2021). The constructivist paradigm and phenomenological qualitative research design. Research paradigm considerations for emerging scholars, 64-83.DOI: https://doi.org/10.21832/9781845418281-008
Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman, & S. K. Abell, Handbook of Research on Science Education (pp. 545-558). New York: Routledge. ISBN: 9780203097267
Rönnebeck, S., Bernholt, S., & Ropohl, M. (2016). Searching for a common ground -A literature review of empirical research on scientific inquiry activities. Studies in Science Education, 52(2), 161–197. DOI: https://doi.org/10.1080/03057267.2016.1206351
Salas, D. J., Baldiris, S., Fabregat, R., & Graf, S. (2016). Supporting the acquisition of scientific skills by the use of learning analytics. In Advances in Web-Based Learning–ICWL 2016: 15th International Conference, Rome, Italy, October 26–29, 2016, Proceedings 15 (pp. 281-293). Springer International Publishing. DOI: https://org.tr/10.1007/978-3-319-47440-3_32
Slavin, R. E. (2002). Evidence-based education policies: Transforming educational practice and research. Educational researcher, 31(7), 15-21. DOI: https://doi.org/10.3102/0013189X031007015
Stone, E. M. (2014). Guiding students to develop an understanding of scientific inquiry: A science skills approach to instruction and assessment. CBE—Life Sciences Education, 13(1), 90-101. DOI: https://doi.org/10.1187/cbe-12-11-0198
Sutiani, A., Situmorang, M., & Silalahi, A. (2021). Implementation of an inquiry learning model with science literacy to improve student critical thinking skills. International Journal of Instruction, 14(2), 117-138. DOI: https://doi.org/10.29333/iji.2021.1428
Taggart, G. L., & Wilson, A. P. (2005). Promoting reflective thinking in teachers: 50 action strategies. Corwin Press. ISBN: 1412909643, 9781412909648
Tang, X., Coffey, J. E., Elby, A., & Levin, D. M. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science education, 94(1), 29-47. DOI: https://doi.org/10.1002/sce.20366
Teig, N. (2021). Inquiry in science education. In International handbook of comparative large-scale studies in education: Perspectives, methods and findings (pp. 1135-1165). Cham: Springer International Publishing. DOI: https://doi.org/0.1007/978-3-030-38298-8-62-1
Teig, N. (2024). Uncovering Student Strategies for Solving Scientific Inquiry Tasks: Insights from Student Process Data in PISA. Research in Science Education, 54(2), 205-224. DOI: https://doi.org/10.1007/s11165-023-10134-5
Tekin, D., & Kabapınar, F. (2023). Ters Yüz Sınıf Modeli ile Mol Kavramı ve Kimyasal Hesaplamalar Ünitelerinin Öğretimi. Fen Bilimleri Öğretimi Dergisi, 11(1), 1-40. DOI: https://doi.org/10.56423/fbod.1200304
Tekin, D. (2020). Kimyanın temel kanunları, kimyasal hesaplamalar ve mol kavramı ünitelerinin yapılandırmacılık temelli ters yüz edilmiş sınıf modeli ile öğretimi [Unpublished Master’s thesis]. Marmara University, İstanbul.
Tekin, D. (2024). Kimya öğretmen adaylarının çoklu öğrenme ortamı oluşturma sürecine yönelik yansıtma becerilerinin incelenmesi (Investigation of Reflective Skills Pre-Service Chemistry Teachers for Process of Creating Multiple Learning Environments) [Unpublished doctoral dissertation]. Marmara University, İstanbul.
Thanh, N. C., & Thanh, T. T. (2015). The interconnection between interpretivist paradigm and qualitative methods in education. American journal of educational science, 1(2), 24-27.
Timperley, H. (2010, February). Using evidence in the classroom for professional learning. In Étude présentée lors du Colloque ontarien sur la recherche en éducation. Available at: https://cdn.auckland.ac.nz/assets/education/about/schools/tchldv/docs/Using%20Evidence%20in%20the%20Classroom%20for%20Professional%20Learning.pdf
Treagust, D. F., & Won, M. (2023). Paradigms in science education research. In the Handbook of research on science education (pp. 3-27). Routledge. DOI: https://doi.org/10.4324/9780367855758-2
Watts, H. (1985). When Teachers Are Researchers Teaching Improves. Journal of Staff Development. Retrieved from https://eric.ed.gov/?id=EJ328842
Willis, J. W. (2007). Foundations of qualitative research: interpretive and critical approaches. London: Sage. DOI: https://doi.org/10.4135/9781452230108
Yıldırım, A., & Şimşek, H. (2013). Sosyal Bilimlerde Nitel Araştırma Yöntemleri [Qualitative Research Methods in Social Sciences]. (9. Ed.). Seçkin. ISBN: 9789750239991.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.