The Primary Students’ Understanding of Scientific Models through Epistemological and Ontological Perspective
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Achieving the targets of science education mostly depends on the true understanding of the fundamentals where science and the scientific efforts are embedded through the realist ontology and epistemology that science is based on. Models have a special place in science education revealing to understand the nature and status of scientific knowledge. By considering this function of models, this research puts forward the views of the primary students on scientific models. The participants of this qualitative survey research are twenty-eight 7th graders of a primary school in Izmir, Turkey. The participants are given a questionnaire and a worksheet, which were developed by the researchers, addressing both epistemological and ontological character of models. The results showed that students have generally moderate understanding of models through perceptual and ordinary reality.
Downloads
##plugins.themes.bootstrap3.article.details##
Models, Primary Students, Epistemology, Ontology, Science Education
Aikenhead, G. (1997). Integrating the scientific disciplines in science education. Keynote Presentation Made to The Gesellschaft Fur Der Chemie Und Physik, Universitat Potsdam, September 22, 1997.
Al-Balushi, S.M. (2011). Students’ evaluation of the credibility of scientific models that represent natural entities and phenomena. International Journal of Science and Mathematics Education, 9(3):571-601. DOI: https://doi.org/10.1007/s10763-010-9209-4
Albanese, A., & Vicentini, M. (1997) Why do we believe that an atom is colourless? Reflections about the teaching of the particle model. Science and Education, 6(3):251-261. DOI: https://doi.org/10.1023/A:1017933500475
American Association for the Advancement of Science (AAAS), 1993. Available at: https://www.aaas.org/resources/benchmarks-science-literacy.
Arons, A. B. (1990). Teaching Introductory Physics, Wiley, New York
Barab, S. A., Hay, K. E., Barnett, M., & Keating, T. (2000) Virtual solar system project: building understanding through model building. Journal of Research in Science Teaching, 37(7):719-756. DOI: https://doi.org/10.1002/1098-2736(200009)37:7<719::AID-TEA6>3.0.CO;2-V
Barzilai, S., & Eilam, B. (2018). Learners’ epistemic criteria and strategies for evaluating scientific visual representations. Learning and Instruction, 58:137-147. DOI: https://doi.org/10.1016/j.learninstruc.2018.06.002
BouJaoude, S. (2002). Balance of scientific literacy themes in science curricula: The case of Lebanon. International Journal of Science Education, 24(2):139-156. DOI: https://doi.org/10.1080/09500690110066494
Buyukozturk, Ş., Kılıc Cakmak, E., Akgun, O.E., Karadeniz, Ş., & Demirel, F. (2008). Bilimsel Araştırma Yontemleri [Scientific Research Methods]. Ankara: Pegem Yayınları.
Carey, S., & Smith C. (1993) On Understanding the nature of scientific knowledge. Educational Psychologist, 28(3):235-251. DOI: https://doi.org/10.1207/s15326985ep2803_4
Chamizo, J. A. (2013) A new definition of models and modeling in chemistry’s teaching. Science & Education, 22:1613-1632. DOI: https://doi.org/10.1007/s11191-011-9407-7
Cheng, M. F., & Lin, J. L. (2015) Investigating the relationship between students’ views of scientific models and their development of models. International Journal of Science Education, 37:15, 2453-2475. DOI: https://doi.org/10.1080/09500693.2015.1082671
Chinn, C. A., & Brewer, W. F. (1993). The Role of anomalous data in knowledge acquisition: A Theoretical framework and implications for science instruction. Review of Educational Research, 63(1):1-49. DOI: https://doi.org/10.3102/00346543063001001
Chiu, M. H. & Linn, J. W. (2019) Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1:12. DOI: https://doi.org/10.1186/s43031-019-0012-y
Coll, R. K., & D. F. Treagust (2003). Learners’ mental models of metallic bonding: A cross-age study. Science Education, 87:685-707. DOI: https://doi.org/10.1002/sce.10059
Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers’ conceptions of modelling in science. International Journal of Science Education, 26(11):1379-1401. DOI: https://doi.org/10.1080/09500690410001673775
Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16:725-749. DOI: https://doi.org/10.1007/s11191-006-9058-2
Eflin, J.T., Glennan, S., & Reisch, G. (1999). The nature of science: a perspective from the philosophy of science. Journal of Research in Science Teaching, 36(1):107-117.
Encyclopedia of human behavior, (2nd ed., pp. 130-136). Oxford: Elsevier.
Erduran, S. (2006). Promoting ideas, evidence and argument in initial teacher training. School Science Review, 87(321):45-50.
Gentner, D., & Smith, L. (2012). Analogical reasoning. In V. S. Ramachandran (Ed.)
Giere, R. N. (1999). Science without laws. Chicago: University of Chicago Press.
Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Dordrecht, Netherlands: Springer.
Gobert, J., O’Dwyer, L., Horwitz, P., Buckley, B., Levy, S., & Wilensky, U. (2011). Examining the relationship between students’ understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5):653-684. DOI: https://doi.org/10.1080/09500691003720671
Gogolin, S., & Krüger, D. (2018). Students’ understanding of the nature and purpose of models. Journal of Research in Science Teaching, 55(9):1313-1338. DOI: https://doi.org/10.1002/tea.21453
Grosslight, L., Unger, C., & Jay, E. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9):799-822. DOI: https://doi.org/10.1002/tea.3660280907
Halloun, I. A. (2006). Modeling theory in science education. Dordrecht: Springer. DOI: https://doi.org/10.1007/s11191-006-9004-3
Hansson, L. (2018) Science Education, Indoctrination, and the Hidden Curriculum,283-306 M.R. Matthews (ed.), History, Philosophy and Science Teaching, Science: Philosophy, History and Education. DOI: https://doi.org/10.1007/978-3-319-62616-1_11
Harrison, G. A., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5):509-534. DOI: https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F
Hodson, D. (1999). Going beyond cultural pluralism: science education for sociopolitical action. Science Education, 83(6):775-796. DOI: https://doi.org/10.1002/(SICI)1098-237X(199911)83:6<775::AID-SCE8>3.0.CO;2-8
Johnson-Laird, P. N. (1983) Mental Models. Cambridge University Press
Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4):369-387. DOI: https://doi.org/10.1080/09500690110110142
Kahn, S., & Zeidler, D. L. A. (2017). Case for the use of conceptual analysis in science education research. Journal of Research in Science Teaching, New York, 54(4):538-551. DOI: https://doi.org/10.1002/tea.21376
Koponen, I. (2007). Models and modelling in physics education: A critical reanalysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7-8):751-773. DOI: https://doi.org/10.1007/s11191-006-9000-7
Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2014). Students’ levels of understanding models and modelling in biology: Global or aspect-dependent? Research in Science Education, 44(1):109-132. DOI: https://doi.org/10.1007/s11165-013-9365-y
Kuhn, D., Cheney, R., & Weinstock, M. (2001). The development of epistemological understanding. Cognitive Development, 15:309-328. DOI: https://doi.org/10.1016/S0885-2014(00)00030-7
Kuhn, T. S. (1996). The structure of scientific revolutions, 3rd ed., (p. X). Chicago: University of Chicago.
Lederman, N. G. (2007). Nature of science: past, present, and future. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Mahwah: Erlbaum
Lee, S. W. Y., & Tsai, C. C. (2012). Students’ Domain-specific scientific epistemological beliefs: A comparison between biology and physics. Asia-Pacific Education Researcher (De La Salle University Manila), 21(2):215-229.
Lee, S. W. Y., Chang, H. Y., & Wu, H. K. (2017). Students’ views of scientific models and modeling: Do representational characteristics of models and students’ educational levels matter? Research in Science Education, 47(2):305-328. DOI: https://doi.org/10.1007/s11165-015-9502-x
Lee, S. W. Y., Wu, H. K., & Chang, H. Y. (2021). Examining secondary school students’ views of model evaluation through an integrated framework of personal epistemology. Instructional Science, 49(2):223-248. DOI: https://doi.org/10.1007/s11251-021-09534-9
Lehrer, R., & Schauble, L. (2010). What Kind of Explanation is a Model? In: Stein, M., Kucan, L. (eds) Instructional Explanations in the Disciplines. Springer, Boston, MA. DOI: https://doi.org/10.1007/978-1-4419-0594-9_2
Lohner, M., van Joolingen, W. R., Savelsbergh, E. R., & van Hout-Wolters, B. (2005). Students’ reasoning during modeling in an inquiry learning environment. Computers in Human Behavior, 21:441-461. DOI: https://doi.org/10.1016/j.chb.2004.10.037
Lopes, J. B., & Costa, N. (2007). The evaluation of modelling competences: Difficulties and potentials for the learning of the sciences. International Journal of Science Education, 29(7):811-851. DOI: https://doi.org/10.1080/09500690600855385
Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4):471-492, DOI: https://10.1080/00131911.2011.628748
Louca, T., & Zacharias C. (2012) Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4):471-492, DOI: https://10.1080/00131911.2011.628748
Machado, J., & Fernandes, B. L. P. (2021) Model Conceptions in Science Education Research: features and trends, Ciência & Educação, Bauru, 27:1-17. DOI: https://doi.org/10.1590/1516-731320210014.
Mahr, B. (2015). Modelle und ihre Befragbarkeit: Grundlagen einer allgemeinen Modelltheorie [Questioning models: Basis of a general model theory]. Erwägen Wissen Ethik, 26(3):329-342.
Mashhadi, A., & Woolnough, B. (1998). Students’ conceptions of the “reality status” of electrons. Paper presented at the Annual Meeting of the Singapore Educational Research Association, Singapore. Available at: https://files.eric.ed.gov/fulltext/ED431597.pdf
McCarthy, C., & Sears, E. (2000). Science education: constructing a true view of the real world? In Stone, L. (Ed), Philosophy of Education 2000, Philosophy of Education Soceity, Urbana, IL, pp. 369-377.
Mohanan, K. P. (2000). Indoctrination in linguistics education. Available at: http://www.iiserpune.ac.in/~mohanan/educ/ling-ed.pdf
National Research Council (1996). National Science Education Standards. Washington, DC: The National Academies Press. DOI: https://doi.org/10.17226/4962
National Research Council (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: The National Academies Press. DOI: https://doi.org/10.17226/11625
National Research Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press. DOI: https://doi.org/10.17226/13165
Nersessian, N. J. (2008). Creating scientific concepts. Cambridge: MIT.
Nicolaou, C. T., & Constantinou, C. P. (2014). Assessment of the modeling competence: A systematic review and synthesis of empirical research. Educational Research Review, 13:52-73. DOI: https://doi.org/10.1016/j.edurev.2014.10.001
Penner, D. E. (2000). Chapter 1: cognition, computers, and synthetic science: building knowledge and meaning through modeling. Review of Research in Education, 25(1):1–35. DOI: https://doi.org/10.2307/1167320
Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5):486-511. DOI: https://doi.org/10.1002/tea.20415
Prins, G. T., Bulte, A. M., & Pilot, A. (2010). Evaluation of a design principle for fostering students’ epistemological views on models and modelling using authentic practices as contexts for learning in chemistry education. International Journal of Science Education, 33(11):1-31. DOI: https://doi.org/10.1080/09500693.2010.519405
Raghavan, K., & Glaser, R. (1995). Model-based analysis and reasoning in science: the MARS curriculum. Science Education, 79:37-62. DOI: https://doi.org/10.1002/sce.3730790104
Sandoval, W. A. (2005) Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89:634-656. DOI: https://doi.org/10.1002/sce.20065
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2):165-205. DOI: https://doi.org/10.1207/s1532690xci2302_1
Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Acher, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6):632-654. DOI: https://doi.org.10.1002/tea.20311
Séré, M., Gonzalez, M.F., Gallegos, J. A., Gonzalez-Garcia, F., De Manuel, E., Perales, F. J., & Leach, J. (2001). Images of science linked to labwork: a survey of secondary school and university students. Research in Science Education, 31:499-523. DOI: https://doi.org/10.1023/A:1013141706723
Silva, C. C. (2007). The Role of Models and Analogies in the Electromagnetic Theory: A Historical Case Study. Science & Education, 16:835-848. DOI: https://doi.org/10.1007/s11191-006-9008-z
Smith, C. L., Maclin, D., Houghton, C., & Hennessey, M. G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3):349-422. DOI: https://doi.org/10.1207/S1532690XCI1803_3
Soulios, I., & Psillos, D. (2016) Enhancing student teachers’ epistemological beliefs about models and conceptual understanding through a model based inquiry process, International Journal of Science Education, 38(7): 1212-1233. DOI: https://doi.org.10.1080/09500693.2016.1186304
Tapio, I., K. (2007). Models and modeling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16:751-773. DOI: https://doi.org/10.1007/s11191-006-9000-7
Tasquier, G., Levrini, O., & Dillon, J. (2016). Exploring students’ epistemological knowledge of models and modelling in science: Results from a teaching/learning experience on climate change. International Journal of Science Education, 38(4):539-563. DOI: https://doi.org/10.1080/09500693.2016.1148828
Taylor, J. L. (2003). Probing the limits of reality: The metaphysics in science fiction. Physics Education, 38(1):20-26. DOI: https://doi.org/10.1088/0031-9120/38/1/303
TMNE (2018). Turkish Ministry of National Education, Secondary Science Curriculum. Available at: http://mufredat.meb.gov.tr/Dosyalar/TTKB/Ortaokul/5/Fen%20Bilimleri/fen-bilimleri-5.pdf
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4): 357-368. DOI: https://doi.org/10.1080/09500690110066485
Unal Çoban, G. (2009). The effects of model based science education on students? conceptual understanding, science process skills, understanding of scientific knowledge and its domain of existence: The sample of 7th grade unit of light [Unpublished doctoral thesis]. Dokuz Eylül University, İzmir

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.